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INTRODUCTION

The recently developed theory of wavelets and multi-scale analysis can
be related to methods used in probability in the theory of f!-boundaries. In
multi-scale analysis, one considers a space X and a group or a semi-group
G acting on the space X and satisfying a contraction property. The main
example is given by the affine group acting on IR. The wavelet bases are
derived from a function which is a solution of a convolution equation for
the action of G on X. In the same way, the f!-boundaries are associated to
a group or a semi-group acting on X and to a measure v on X solution of
a convolution equation of the form f! * v = II, where It is a probability
measure on G.

The purpose of this article is to present a method for the analysis of func
tions defined on the support of the invariant measure v of a f!-boundary,
in a way which is analogous to the analysis of functions on IR, or IR d

, in
wavelet bases.

In a first part, we briefly recall the methods used in multi-scale analysis,
then we introduce the main ideas of f!-boundary analysis. The second part
is devoted to a more formal presentation of f!-boundary analysis, and to
the proof of the results. The main tool is the martingale theory, which is
known to be related to the Calder6n-Zygmund methods in real analysis
underlying the wavelet analysis.

A note announcing the results of this paper has appeared in [1].
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1. WAVELET ANALYSIS AND Ii-BoUNDARIES

(1)

In recent years, the wavelet analysis has been developed in two directions
(cf. [3, 6J), namely, continuous time analysis and expansion in ortho
normal bases of wavelets. We recall briefly these two methods in the case
of the real line.

We denote by G the affine group {g = (a, h), a> 0, hEIR} acting on IR by
x-> g·x=ax+h.

1.1. Wavelet Transforms

In the first method, we consider a fixed test function ljJ E L 2( IR), satisfying
the admissibility condition

where l/J denotes the Fourier transform of ljJ. To every functionfof L 2(1R),
one can associate the function HI defined on G, or equivalently on the
half-plane {(a, h), a> 0, hEIR), by

HI(a, h) =t f(x) a 1i2ljJ Ct: h) dx.

The admissibility condition satisfied by ljJ implies, for some constant C1J' an
isometry formula

r ., 1 If ' daI/(x)l- dx =- IHI(a, h)l- J dh,
" c1J lr

and an inversion formula which can be written formally,

. 1 r 1/2,/, (X - h) d~ dh./ (x) = - H I ( a, h) a 'I' ,
c1J " a a-

(2)

1.2. Orthogonal Wavelets

In the orthogonal wavelets method, we avoid redundancy and use
only the coefficients H I (2 ',2 -jk), j, k E 7L, from formula (1). We select
for ljJ an orthogonal wavelet, i.e., a function such that the family
{ljJj,k( . )} = {2 i /2ljJ(2 i . -k), j, k E 7L} forms an orthonormal basis of L 2( IR).
The coefficients HI (2 j,2 'k) are, in that case, the coefficients of the
expansion off in this orthonormal basis {ljJ I.d.

The Haar basis give a simple example of a family {ljJ I.k} which forms an
orthonormal, but not regular, basis of L 2( IR). The construction of regular
orthonormal wavelets, which is mainly due to recents works of Yves Meyer
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and Ingrid Daubechies (cr. [6]), can be described within the framework of
multi-scale analysis introduced by Stephane Mallat [5]. We shall briefly
describe in the sequel this approach.

Let Vo be a closed sub-space of L 2(IR) which is invariant under the
action of the translations by integers, and such that

f(')E Vo= f( ·/2)E Vo· (3)

The sequence (Vn= {f( 2n. ), f E Vo}, fI E ;;Z) forms an increasing seq uence of
closed sub-spaces of e( IR). If this sequence fulfills the condition

n

and (4 )

one can use the sequence of sub-spaces (Vn)nEd' to make a multi-scale or
multi-resolution analysis of L 2 (IR). The sequence (Vn ) is to be compared
to a filtration in martingale models.

Our aim is to construct a sub-space Vo generated by the functions
{t/J( . - 11), 11 E;;Z}, t/J being in L 2( IR). More precisely, we try to construct a
function ¢J such that the family {¢(. - 11),11 E;;Z} forms a Riesz basis of the
closed sub-space spanned in L 2( IR). The condition (3) can be written

¢J(x) = 2 I hk ¢J(2x - k),
k

(5)

where (hd is an array of coefficients such that L /h k /
2 <XJ.

One recognizes a convolution equation for the action of affine group G
on IR. We consider to this effect the group G and the discrete measure
supported by G giving the mass hk to gk = n, kI2), for k E fl. Equation (5)
can be seen as a convolution equation of the form J1 * v = v, where the
measure II has density ¢J with respect to the Lebesgue measure.

For some particular choices of the array h, it is possible to show the
existence of a regular solution for Equation (5). In that way, we obtain a
function ¢J whose translates span a space Vo verifying the condition (3).
Moreover, it is not difficult to show (4).

It still remains to construct a t/J such that the family {t/Jt. k } provides an
orthonormal basis of L 2( IR). If the functions (¢J( . -11), fI E ;;Z) form not only
a Riesz basis but an orthonormal basis of Vo, then t/J is given by the
formula

t/J(x)=22:(-1)nh, ,,¢(2x-n).

It is easy to check that the translates of t/J by the integers form, in that case,
an orthonormal basis of the orthogonal supplementary of Vo in VI'
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The orthogonality property requires that the array (h k ) satisfies some
algebraic conditions. In some situations, it could be interesting to relax the
orthogonality requirement, and replace it by other properties, as it is the
case, for instance, in the dyadic interpolation.

Another possibility consists in taking for the array (hd a probability
vector (h k~ 0, Lk hk = I). Such a choice destroys orthogonality (except in
the particular case of the Haar basis), but provides us with several advan
tages: it leads to positive approximation operators, it can be generalized to
various geometric situations, and finally, it allows the use of tools of
probability theory.

It is this point of view which led us to the analysis of tl-boundaries
presented here. In the remainder of this section, we give a short sketch for
the case of IR, before the general case and the proof of the results in the
further sections.

1.3. Analysis of a tl-Boundary, Case of the Real Line

In this section we remain within the framework of the affine group G
acting on E= IR. For an element g of G, we denote by (a(g), h(g» the
coefficients of g.

Let tl be a probability measure on G which satisfies the conditions

Jlog+ a(g) tl(dg) < +ce, Jlog+ Ih(g)1 tl(dg) < +ec,

and

flog a(g) tl(dg) < 0.

Let (Yn)ni' I be a sequence of independant random variables defined on a
probability space (Q, .?, IP), with values in G and distribution tl. Let
(Xn = Y t •.. YlI )lIi' I be the associated random walk.

The assumptions imply, using the law of large number,

li~ [a( y l )··· a( Y,.lr" = exp (f log a(g) tl(dg ») < 1,

and

lim sup Ib( ynWin ~ 1.
n

For every x E IR, it follows that the process
11-- 1

Y 1 .. • YIl·x=a(Yd .. ·a(Yn)x+ I a(Yd .. ·a(Ydb(Yk+d,
k~O

converges IP-a.s. to a random variable Z which does not depend on x.
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From that, we deduce that the distribution v of Z is the unique proba
bility measure on IR which satisfies the convolution equation IJ. * v = v, and
that the sequence (Xn . v)n;" I converges to the Dirac measure bz.

We will say that the pair (E, v), i.e., the real line IR endowed with the
measure v, is a J1.-boundary of G.

Let us assume that, for It-almost every g E G, the measure g. v is
absolutely continuous with respect to v, a condition which is satisfied, for
instance, when It is a discrete measure. For each integer n;:::, 1, we can
define

(6)

with

f dgv dgv n
K)x, y) = -d (x) -d (y) It (dg).

G v v

The previous formula is analogous to a decomposition formula of
wavelet type. The measure v is a test measure, in the same way the function
I/J in Section 1.1 is a test function in the multi-scale analysis. The integrals
off with respect to the measures gv give the expansion coefficients off

The following result (proved for general It boundaries of groups in
Section 3) shows that the sequence (Tnf(x))ne N gives an approximation
off:

Let (E, v) be a IJ.-boundary of G. Then, for every function f in LP(v), »'e
have limn T nf = f, the convergence being in the LP norm whenever p ;:::, I, and
pointwise whenever p > I.

In this way, we have defined a "unit approximation" in U(E, v). Eq. (6)
can be rewritten, using the random walk (Xn)n;" I'

[
dXnv ]TJ(x) = [ f(Z)~ (x) ,

or, in approximate form,

[
dX v ]

T,J(x) - [ f(X" ,xo) d: (x) ,

where Xo is any starting point in E. This last equation is an interpolation
formula which provides a reconstruction scheme for f from the points
{j(Xn . x o)} n > 0, the "information" that the random walk reads on the
space (E, v). The approximation of a function on (E, v) given by the
previous scheme fits the hierarchical structure of (E, v) defined as a
It-boundary of G and therefore can be interpreted as a multi-scale method.
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2. DEFINITIONS, NOTATIONS, EXAMPLES

We present now the general framework of p-boundaries analysis. We will
use classical results on conditional expectation and martingales, (see, for
instance, [7J). For the theory of p-boundaries, see H. Furstenberg [2].

2.1. DEFINITION. In the following, we denote by G a topological group
(or semi-group), and by p a probability measure on the Borel sets of G.
The law of G is denoted multiplicatively, and we assume that G has an
identity element e.

A topological space E on which G acts in a continuous way is called
a G-space. That means that there exists a continuous application
(g,x)---+g·x from GxE to E such that e·x=x and g]'(g2'X)=

(g]g2)'X, 'tIxEE, 'tIg" g2EG.

2.2. Notation. If v is a probability measure on a G-space E, we denote
by p * v the image of the product measure p ® v on G x E by the
application (g, x) ---+ g. x. In other words we have

Lf(x) p * v(dx) = LLf(g· x) p(dg) v(dx).

Considering in particular G itself as a G-space, we find the usual
convolution of measures. When p is a Dirac measure bl< on G, the measure
bl? * v will be simply denoted by g . v.

2.3. DEFINITION. We call (G, p)-space a pair (E, v), where E is a
G-space and va p-invariant probability measure (i.e., such that f1 * v = v).

2.4. EXAMPLES. (I) Let G = {(a, b): a> 0, bE JR} be the affine group
acting on JR by: g. x = ax + b, for g = (a, b) E G and x E R For every non
zero natural integer r, consider the probability measure Pr on G defined by

The distribution vr of the sum of r independant random variables,
uniformly distributed on [0, 1J, is the unique probability measure
Pr-invariant on JR. The measure v, has a density qJ, with respect to the
Lebesgue measure, supported by [0, rJ. For r)'; 2, qJ r is a function of class
C - 2, piecewise polynomial of degree r - I.

(2) Let D= {ZEC: Izi ~ I} be the unit disk of the complex plane.
Let G = {(p, ~) E C 2

: Ipl = I, IIXI < I} be the group of homographic
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transformations on the disk D: if g = (p,:x) E G and zED, g. Z =
p((z+:x)/(l +iz)). Let K= {(p, 0): Ipl = I} be the sub-group of rotations
of G. The group G acts continuously on the unit circle E= {z E iC : Izi = I}.
If IJ is a probability measure on G, left-invariant under the rotations (i.e.,
such that k . IJ = 11, Vk E K), then the Lebesgue measure on the unit circle E
is the unique Il-invariant probability measure.

2.5. Harmonic Functions and (G, Il)-Spaces

In the following, we will assume that we have a (G, Il)-space (E, v), such
that E is locally compact with a countable basis.

A function H on G, with values in IR, is said to be f.l-harmonic if, for
every gE G, the integral Ie H(gh) f.l(dh) exists in IR and is equal to H(g).

A function H on G, with values in IR, is said to be Il-harmonic in the
wide sense if, for IJ-almost every g E G, the integral IG H(gh) f.l(dh) exists in
IR and is equal to H( g ).

Let f be a Borel function on E, Let us define

Hf(g) = Lf(g· x) v(dx) (gE G).

The function H, is Il-harmonic bounded on G if the function f is
bounded. It is f.l-harmonic on G, with values in [0, + 00], iff is positive.
Iffis v-integrable, H,(g) is defined for f.l-almost every gEG. We have thus
defined a function which is Il-harmonic in the wide sense on G. The
application.f -+ H, is a contraction from UtE, v) to U(G, 11), for every
real p, 1~p~ +cx::.

2.6. EXAMPLE. We come back to the second example from (2.4).
Since v is the Lebesgue measure of the unit circle, the function H, is
right-invariant under the rotations, i.e., H r(gk) = H f ( g), Vg E G, Vk E K.
The origin is left invariant by the sub-group of rotations K in G;
K = {g E G : g . 0 = 0 }. Setting

h,( g ·0) = H,( g) (g E G),

we define a function h, on the unit disk D. If g ·0 has the polar decomposi
tion re'o, we have

hf(g· 0) = Lf(g· x) v(dx)

f dgv= f(x) - (x) v(dx)
f.' dv

1 f2n. 1- r2

=- f(el/) dt.
2n 0 1 + r2

- 2r coste- t)
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One recognizes In the last equality, the Poisson kernel; therefore
the function hr is an harmonic function (in the classical sense) for the
Laplacian. In this example, the transform f -> Hr can be interpreted as the
construction of the harmonic function (in the sense of the Laplacian) on D
with f as a trace on the unit circle E.

3. CONVERGENCE THEOREMS

3.1. We consider the product space Q = GN
', equipped with the

a-algebra :7 of its Borel sets and the product measure IP = ® N' {l. We
denote by (Yk)k?, I the sequence of coordinates on Q and we set

Xo=e,

X/l= Y 1 ••• Y/l'

Let us denote by .~ the trivial a-algebra and, for n?:; 1, by :7" the a-algebra
which is generated by the variables {Yk : 1 ,;:; k,;:; n}.

We use the martingale theory to prove the following result.

3.2. PROPOSITION. (i) For IP-almost every WE Q, the sequence of
probability measures (X/l(w), v)/l?,o converges vaguely to a probability
measure P(w, .) on E such that

v(dx) = f P(w, dx) lP(dw).
Q

(ii) The transition operator, denoted by P, defined by

Pf(m) = Lf(x) P(w, dx) (WEQ),

is a contraction from U(E, v) into U(Q, IP), for every p E [1, + 00 ].

(iii) For every f in L I (E, v), we have

Hr(X,J "';'<;' 1E 1' [Pf IS';,].

(iv) The process {Hr(X,,): n?:; O} converges IP-a.s. and in U(Q, IP)
norm to PI, for f E U(E, v),/or every p E [1, + 00 [.

Proof From the invariance relation {l * v= v, it follows that, for every
Borel bounded function I, the process {Hr(X,,), n ?:; O} is a bounded
martingale. From martingale theory, this process converges therefore IP-a.s.
and in the sense of U(Q,:7, IP) (p?:; I) to a random variable W r which
closes the martingale

Hr(X,,) = IE p [ WrlS';,],
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The space Ca(E) is separable, E being assumed to be locally compact with
a countable basis. Let (fp)p;<a be a dense sequence in Ca(E). Applying the
previous results to each Jp , we obtain a measurable subset Q a of Q

with IP'-measure I such that, for every WE Q a and every p ~ 0, the
sequence (H1r(Xn(w))=X,,(w).v(fp)),,;<o converges. The convergence of
(X,,( w) . v(f))";,, a for every JE Co(E), and for WE 0 0 , follows. The sequence
of probability measures (X,,(w)· V)";,,o converges therefore vaguely to a
positive measure P(w, '), which satisfies, a.s.,

Taking expectations, we obtain

tf(x) v(dx) = IE)' [tf(X) P(', dx)l

"IrE C()(E). (7)

One deduces that v(dx) = fo P(w, dx) lP(dw), on one hand and, taking an
increasing sequence of elements in Ca(E) which converges to the constant 1
function, that, for IP-almost every WE Q, P(w, .) is a probability measure
on E, on the other hand.

The relation (7) can be extended to elements in L '(E, v), using a density
argument. The last assertion (iv) follows from (iii) using standard results of
martingale theory. I

3.3. Let us consider the product Q = 0 x E provided with its Borel sets
and with the probability measure iP defined by

IP(dw, dx) = IP'(dw) P(w, dx).

We call W (resp. U) the projection map from Q to 0 (resp. E).
For every fEU(E, v) and FEU(Q, 1P)(ljp+ Ijq= I, 1~p~ +:X»), the

equality

shows that

In other words, P is a conditional distribution for U knowing W.
Let P*F be the element of U(E, v) defined by (P*F) c U = 1Ejl>[F 0 WI U].

This defines a contraction p* from U(Q, IP) into U(E, v) which is charac
terized by the relations

LPJ(w) F(w) lP(dw) = L.f(x) P*F(x) v(dx),

for every fE U(E, v) and FE U(Q, IP).
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The spaces GN· and E being Polish spaces, there exists a "transition
operator" version of p* (cr., for example, [7, Chap. 5.4]). This version
gives a conditional distribution of U knowing W.

3.4. For every n;?: 0, we denote by T" the contraction of L"( E, v)
( I ~ P ~ +UJ), defined by

where [:" denotes the conditional expectation operator with respect to the
a-algebra '~I' We have

From the martingale theory and the properties of the conditional expecta
tion, if follows immediately that for every f E L"( E, v), I ~ P < +x" the
sequence of functions (TJ)""3 0 converges in the sense of LP(E, v) to p* PI
Moreover this convergence holds v-a.s. when

[l'[sup IHj(X,,)!] < +x,
n~O

which turns out to be the case for p> I, according to Doob's theorem.

3.5. We have shown that, for fEL"(E, v), 1~p< +00, the sequence
(T,,f)""3o converges in L"(E, v) to the element P*PI of U(E, v). An
interesting case is when the operator p* P is the identity.

If U = Z W, IP-a.s., for some random variable Z, the operator P* P is
clearly the identity. Conversely, assume that P*P is the identity. For every
IE e(E, v), we have

[G,[(Pf)2] = (Pj; PI)", = (j; p* PI). = (j; f),. = [",[p(f2)].

There exists then a subset 0 0 in 0 with IP-measure I such that, for WE 0 0 ,

we have

i.e., I is P(w, . )-a.s. constant. It follows that P( OJ, .) is a point measure, for
every W in 0 0 ,

Therefore, we have shown that the operator p*P is the identity if and
only if, for IP-almost every WE Q, the measure P( w, .) is a point measure,
of the form 67 (U»), where Z is a random variable with values in E and
distribution v.

3.6. DEFINITION [2]. A (G,I1)-space (E, v) is called a l1-boundary of G
if, for IP-almost every WE 0, the sequence of probability measures (XII v)""3 0

converges vaguely to a Dirac measure 15 7\",\'
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In the case of a ji-boundary, we have the relations
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p*p=! and pp*= [~,

where [~ denotes the conditional expectation projector with respect to Z.

Therefore we have shown the following result:

3.7. THEOREM. Let (E, v) he a fl-houndary. For ever.\, f in L"(E, I'),
1~p< +CO, the sequence (T,J),,~o converges in L"(E, v) to f and this
convergence holds also v-a.s. for p > 1.

4. EXPRESSION OF T"f, SERIES REPRESENTATION

4.1. HYPOTHESIS. We assume now that for II-almost every g E G, and
therefore for L, ~ I ( 1/2') ji'-almost every g E G, the measure gv is ahsolu/e(v
continuous with respect to v, i.e.,

dgv
gv(dx) =-d (x) v(dx),

v

where we have denoted by dgvldv the Radon-Nikod}'m-Lebesgue derivative
of the measure gv with respect /0 v.

This hypothesis is clearly satisfied if the measure fl is discrete.

4.2. Expression of T"

For cp E L q(E, v) and f E PiE, v), we have

[LP[Pcp. Hj(X,,)] = IEp[Hj(X,,) IEtn[PcpJ]

= 1E[p[Hr(X,,) H(I'(X,,)]

= LH((g) H <p(g) ji"(dg)

= Ie Hr(g) (L cp(g. x) j'(dX)) fl"(dg)

=f Hj(g) (f cp(u) dgv (u) V(du») /1"(dg)
G· E dv

=Lcp(u) [Ie H((g) d~v (u) fl"(dg )] v(du).
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, f dgv n
Tnf(x) = (i Ht(g) d; (x) Ji (dg) (xEE),

From now on (E, v) is assumed to be a Ji-boundary of G for which the
hypothesis (4.1) is satisfied.

4.3. Expression of the "Innovation"

For{EC(E,v), T,,fcan be written

[
dXnv l J fT,,/(·) = IE" Ht(Xn)~ (.) = K n(" y) (y) v(dy),

where

[
dXnV dXnv l

Kn(x,y)=1E -j-(x)-d-(y) .
( v v

We remark that the kernel K,,(x, y) is not necessarily defined for x = y.
Since Ji*V=V, for v-almost every xEE, the function g---+(dgvjdv)(x) is
Ji-harmonic in the wide sense. It follows that, for v-almost every x E E, the
process (dXnvjdv)(x)) is a martingale with respect to the filtration (g;;,)n30;
from which we deduce the relations,

, . [ [ ] dXn + J V J(Tn+,f-Tnf)(·)=IE" Ht(Xn+Jl-Ht(Xf/) d" (.)

l (dXn + 1" dX" V) J=lE p (Ht(Xn+Jl-Ht(Xn)) dv -~ (0).

4.4. For g, y E G, define

dgyv dgv
l/!;.: ,.(x)=--(x)--d (x)

'. dv v
(XE E).

The function l/! is in L J(E, v).
From the previous relations, it follows, for every function f in L 1(E, v),

the equality (in LI(E, v)),

f(·) = (1, 1),. + L f f (1, l/!;.:,,.), l/!K.,(·) Jin(dg) Ji(dy).
n~l G (i

If{EU(E, v), with p> 1, this equality is valid in U(E, v) and even v-a.s.
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4.5. EXAMPLE. Coming back to the first example in (2.4), we obtain the
formulae

(2" - Ilr l J
qJr(x) Tnf(x) = 2

211 k~O t/(U)qJr(2 f1U-k)dU qJr(2"x-k)p,,(k),

(2n -- l)r r

qJr(')fC)=Lf(u)v(dll)+ I 2 211 I I p,,(k)Pt(l)
II;;' I k ~() I~O

x It flu) l/Jt!(u) duJl/Jr:I(·),

with

l/Jr:l(x) = 2qJr(2" + IX - 2k -I) - qJr(2/1x - k),

1 [ki2"1 . _ I

p,,(k)=2
11r

I (-I)/C~C~2",+r I 0~k~(2"-I)r,
;=0

and, for 1- 1~ x < I, 1= 1, ... , r,

1 I - t .

qJr(x) = , I (-I)'C~(x-ir-1
(r-l). i~O

The previous formula giving PII(k) follows from

Vr~2.

where XI' X 2 , ••• , XII are independant random variables with binomial
B(r, ~) distribution.

4.6. Remarks. (1) Let us assume, for simplicity, that /1 is discrete. Let
/10 be the Dirac measure at the identity element e of G. For every integer
n~ I, we call VII the closed vector subspace of L 1(E, v) generated by the
functions {T/I/, f ELI (E, v)}. The sub-space Vo contains only the constant
functions.

The sub-space V" is equal to the closed vector sub-space W" generated
by the functions {dg~'/dv, g E suppeu/l)}. (It is ·clear that V" is contained in
W". On the other hand, if ifJ E L"- (E, v) is orthogonal to V"' we have

(T/I/'ifJ)v=O,

In particular, for f = ifJ, we obtain [[H ;(X,,)] = 0, i.e., (ifJ, dgvjdv) = 0, for
/1"-almost every g E G. From which the inclusion of W" in VII')
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The equality
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dgvv dgvL -- (-)/I(Y)=-(-)
)' E (j elv elv

(gEG)

implies the inclusion VfI c VfI + I .

We have the properties (to be compared with those of a multi-scale
analysis)

and, from what we have seen earlier,

fI

(2) There are numerous examples of /I-boundaries. We have already
given examples when G is the affine group. If we consider now the case of
G = G/(d, IR) or G = SI(d, IR) we can take for a G-space E the projective
space pd .. 1 or more generally a space of flags. For a large class of proba
bility measures /I, there exists a unique probability measure v on E such
that (E, v) is a (G, /I) boundary. See [2,4,8].

(3) We have a "Plancherel's formula" (to be compared with the
isometry formula (2))

f f2(X) v(elx) = I r(H t (g))2(/lfI+I-/lfI)(dg)+H}(e).
E n>O~

5. FROM LOCAL TO GLOBAL

5.1. In the previous formulae, the pair (/I, v) can be replaced by the pair
(r/iT I, TV) for any element r of G. It follows that, for IE U(E, rv), the
sequence of functions,

J
dgv

T,,/r(r I· X)= Ht(Tg)-(r I_X)jifl(dg),
G dv

converges in U(E, !V), and even rv-a.s. if p > I, to f (We denote by r the
function x E E -+ I( r . x).)

This allows us the reconstruction off on the support of rv and not only
on the support of v.
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5.2. Assume that there exists a discrete subgroup r of G such that
Lor E r rv defines a positive Radon measure A on the Borel sets of E, and
define

(f dgv )Sn/(x)= L Hr(rg)di(r-1x)pn(dg )
rE r G

We have then the following result.

(XE E).

5.3. THEOREM. For every integer n ~ 0, the operator Sn is a contraction
of the spaces U(E, ).) (p ~ 1). For every f E U(E, A), the sequence of
functions (Snf)n'30 converges in U(E, A) to f and this convergence takes
place even ;.-ao5. if p > 1.

Proof For any subset A of r and any integer n ~ 0, define

(x E E).

We note that

(
~ dr 0 v ) - I ~ dgv L d)}J d )
L, dA (x) 1... di(ro x)b ro( r p ( g,

ToeA TOEA

defines, for A-almost every x E E, a probability measure on the Borel sets of
r x G. It follows, by the convexity inequality,

IIS~f 11 ~(E.i) ~ f.(L ~;' (X))P S~(lflP)(x) A(dx).
E Ie A

As LrEA drv/dA(') ~ 1, A-a.s., we obtain

II S:f IliJ'(E.;) ~ I H1rLP(r) = II f II ~IE.LH''''')·
rEA

We deduce that the operator Sn = S~ is a contraction in the U(E, A)
spaces and that, for every fin LP(E, ).), the sequence (Snf)n'30 converges
in U(E, ).) to f

For p> 1, we show that this convergence holds even A-a.s. We know
that, for r E r, the sequence of functions

converges rv-a.s. to f(· )(drv/dA)(')' From the Lebesgue dominated con
vergence theorem, it is sufficient to show that, for every positive element f
of U(E,).),

drvL sup (Tn.r(r-I'))"d}(-)< +00, A-a.s.
IE r n ..

640020-8
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We show in fact that this function is in Lp(Al. Actually, we have

[
" - I dry ] p ,,[ - I p dry J'L sup (T"F(r '))-d) (-) ~ L sup (T"F(r .» -d' (.) ,A-a.S.,

rEr II ~ rET" It

because

dryI d)' = 1, A-a.s.
rE r

On the other hand, using Doob's inequality on p-integrable martingales,
we have

L[S~p (T"F(r -IX»]P ~~' (x)).(dx) = Ls~p (T"F(x»P v(dx)

= [[sup ([[[[f(rZ) I~J IZJ)PJ
"

~ [[sup 1E[f(rZ)I~]PJ

"
~ lE[sup H/(rX"YJ

"
~ Iisup H/(rX"lll iJ,(Q.I')

"

~C~ 1rs~p II H/(rX,,) II iJ,(Q, 1')

~C~lrL.P(x)rv(dx).

Consequently, the theorem follows. I

5.4. EXAMPLE. In Example 1 of (2.4 l, we take for r the group of
integral translations. We obtain for ). the Lebesgue measure on R

The approximation of a function! on IR is given by

Snf(xl= I Y".m(f !(U)lfJr(2"u-mldU)lfJr(2"x-ml,
mE.l R

with

}' = 22
"",m p,,(m - 2"1),



MULTI-SCALE ANALYSIS OF BOUNDARIES

and the expansion of f is

f(x) = m~il {(f flu) CPr(U - m) dU) CPr(x - m)

+ n~1,to }'II,mP I(l) [f~ flu) t/J~,),(u) du ] t/J~:,II(X)}-
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